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How resource abundance and resource 
stochasticity affect organisms’ range sizes
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Abstract 

Background  From megafauna to amoebas, the amount of space heterotrophic organisms use is thought to be 
tightly linked to the availability of resources within their habitats, such that organisms living in productive habi-
tats generally require less space than those in resource-poor habitats. This hypothesis has widespread empirical 
support, but existing studies have focused primarily on responses to spatiotemporal changes in mean resources, 
while responses to unpredictable changes in resources (i.e., variance in resources or resource stochasticity) are 
still largely unknown. Since organisms adjust to variable environmental conditions, failing to consider the effects 
of resource unpredictability can result in an insufficient understanding of an organism’s range size.

Methods  We leverage the available literature to provide a unifying framework and hypothesis for the effects 
of resource abundance and stochasticity on organisms’ range sizes. We then use simulated movement data to dem-
onstrate how the combined effects of resource abundance and stochasticity interact to shape predictable patterns 
in range size. Finally, we test the hypothesis using real-world tracking data on a lowland tapir (Tapirus terrestris) 
from the Brazilian Cerrado.

Results  Organisms’ range sizes decrease nonlinearly with resource abundance and increase nonlinearly with resource 
stochasticity, and the effects of resource stochasticity depend strongly on resource abundance. Additionally, the dis-
tribution and predictability of resources can exacerbate the effects of other drivers of movement, such as resource 
depletion, competition, and predation.

Conclusions  Accounting for resource abundance and stochasticity is crucial for understanding the movement 
behavior of free-ranging organisms. Failing to account for resource stochasticity can lead to an incomplete and incor-
rect understanding of how and why organisms move, particularly during periods of rapid change.
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Background
The amount of resources an organism is able to access is 
a strong determinant of its fitness. Resource limitations 
can cause individuals to experience a negative ener-
getic balance, which can then result in lower fitness [1, 
2], altered physiology [2–5], lower chance of reproduc-
tion [2, 6–8], and even death [9, 10]. Thus, many organ-
isms adapt their behaviors and/or physiology in response 
to changes in local resource abundance to ensure their 
needs are met (e.g., soil amoebae Dictyostelium spp.: [11], 
plants: [12], and animals: [13]).

While there are many ways that individuals can 
respond to resource availability, movement represents 
one of the most readily available traits that motile spe-
cies can adjust [14, 16, 25]. The relationship between 
organisms’ movement and resource abundance has long 
been of interest to biologists. In his seminal paper, Burt 
[17] considered the search for food as the primary driver 
for movement within an organism’s home range. Three 
decades after, Southwood [18] suggested that change in 
resource abundance drives how organisms decide where 
to live and when to reproduce. Two years later, Harestad 
and Bunnel [13] proposed that the simplest relationship 
between resource abundance and an organism’s home-
range size is

where H is the organism’s home-range size, C is the 
organism’s resource consumption rate (kcal day−1 ), and R 
is the resources the organism can access (kcal day−1 unit 
area−1 ). Harestad and Bunnel’s model is simple to con-
ceptualize, and it allows for testable predictions, but few 
studies are structured around a set of theoretical expec-
tations such as Harestad and Bunnel’s hypothesis. Many 
researchers have since demonstrated that organisms 
adapt their range sizes in response to resource abun-
dance, but results are typically reported as independent, 
novel findings. Perhaps more problematic is the fact that, 
while much work has been done on estimating organisms’ 
responses to changes in mean resource abundance, there 
is little information on how organisms respond to unpre-
dictable changes in resources (i.e., resource stochasticity, 
but see: [19–22]). Thus, there remains a need for a clear, 
unifying hypothesis of the effects of both resource abun-
dance and stochasticity on organisms’ range sizes.

Here, we refer to a location’s average amount of 
resources as “resource abundance”, while we use the 
phrase “resource stochasticity” to indicate the vari-
ability in resources after accounting for changes in the 
mean. We argue that, on its own, a habitat’s resource 
abundance is not sufficient to assess the habitat’s qual-
ity, nor make predictions about how much space an 
organism might use. To see this, consider, for instance, 

(1)H = C/R,

a herbivore grazing in a grassland with relatively low 
but constant forage availability (i.e., low mean and 
variance). The animal may require a large but constant 
home range size as it moves between patches in search 
of food. If, instead, it lived in a desert with equally 
scarce forage but rare, sudden, and strong pulses of 
resources (i.e., low long-term mean and high stochas-
ticity), it may switch between dispersal in search for 
high-resource patches and short-term range residency 
within patches (sensu [15], see [23–25]). Previous stud-
ies suggest that resource stochasticity may decrease 
organisms’ fitness and landscapes’ energetic balances 
(e.g., [26]), but there is still limited empirical evidence 
to support this hypothesis (but see: [21, 27, 28]).

In this paper, we illustrate how an organism’s range 
size can be expected to depend on both the abundance 
and unpredictability of resources. First, we set the theo-
retical background necessary for the successive sec-
tions by introducing key concepts and notation. Next, 
we provide a review of the effects of resource abun-
dance on range sizes while suggesting a simple and 
unifying hypothesis. Afterwards, we provide a review 
of the effects of resource stochasticity on organisms’ 
range sizes while suggesting a second simple and unify-
ing hypothesis. Subsequently, we support the hypoth-
esis using quantitative, simulated responses in range 
size to changes in resource abundance and stochastic-
ity. Finally, we demonstrate how this framework can be 
used in practice to describe the movement ecology of 
a lowland tapir (Tapirus terrestris) from the Brazilian 
Cerrado [29].

Resources as a random variable
Resources (e.g., food, water, shelter, heat) are often unpre-
dictable (and difficult to quantify), since they depend 
on various factors which cannot be accounted for eas-
ily, including climate [7, 30, 31], weather [31, 32], com-
petitive pressure [33, 34], and differences in energetics at 
among individuals [7] and species [35]. Thus, it is possi-
ble to treat the amount of resources R at a given point in 
time ( t ) and space (location vector �u ) as a random vari-
able, denoted as R(t, �u) . Treating resources as a random 
variable allows us to leverage techniques from probability 
theory and statistics, such as the expectation of a random 
variable (i.e., its mean) and its variance around the mean. 
We indicate the expected value and variance of random 
variable R using E(R) and Var(R) , respectively, and we use 
µ(t, �u) and σ 2(t, �u) to indicate them as functions of time 
( t ) and space ( �u ). Appendix A defines and expands on 
the concepts of probability distributions, expected value, 
variance, and provides examples of them for Gamma and 
Beta distributions.
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Effects of resource abundance, E(R)
While organisms’ needs vary greatly between taxonomic 
groups, some needs are essential for the growth, survival, 
and reproduction of most organisms. All heterotrophic 
organisms require sources of chemical energy (i.e., 
food), water, and various limiting nutrients [36–38]. As 
the abundance of essential resources fluctuates, motile 
organisms can move to new locations or ‘patches’ to meet 
their requirements [15, 39], but movement also increases 
energetic needs [40].

When E(R) is high, we expect organisms’ ranges to be 
relatively small and near the smallest amount of space 
required to survive (see Fig. 1A as well as: [27, 28, 41]). 
Like Harestad and Bunnel [13], we also expect organisms’ 
range sizes to increase nonlinearly as E(R) decreases, but 
we highlight that organisms may adopt different behav-
iors at low values of E(R) . These behaviors include maxi-
mal home range expansion (home range size is limited 
by vagility, habitat structure, competition, and predation, 
e.g., [33, 34, 42, 43]), migration [44–46], and nomad-
ism [23, 25, 47, 48]. It is unclear when organisms switch 
from range residency to migration or nomadism (or vice-
versa), but understanding the gradient among these types 
of movement is necessary for quantifying the effect of 
resource abundance on organisms’ range size and move-
ment behavior (mammals: [49], moose, Alces alces: [23], 

eagles, Haliaeetus leucocephalus: [24, 50], lesser flamin-
gos, Phoeniconaias minor: [51]).

Overall, the hypothesis that range size decreases with 
resource abundance, E(R) , is commonly accepted and 
well supported, but many studies assume a linear rela-
tionship (e.g., [21, 41, 52–54]). This is problematic 
because, conceptually, the relationship between range 
size and E(R) must be nonlinear, since: (1) there is an 
upper limit to how much space an organism is able to 
explore in its finite lifetime and (2) the minimum amount 
of space it requires to survive is necessarily greater than 
zero (see [27, 28, 55–57], and contrast them to the ear-
lier references that assume a linear relationship between 
H and R ). Consequently, we suggest analysts use models 
that account for this nonlinearity when estimating the 
effects of resource abundance on range size. While the 
relationship may be approximately linear for some range 
of E(R) , this assumption often does not hold for low or 
high values of E(R) (e.g., [52]). Additionally, identify-
ing inflection points in nonlinear relationships can help 
understand the pressures and limitations of increasing 
range size.

Effects of resource stochasticity, Var(R)
Assuming resource stochasticity is constant over time 
and space can be a useful simplification of relatively 
stable environments or when information on how E(R) 

Fig. 1  Hypothesized range size of an organism as a function of A resource abundance and B resource stochasticity. We expect low values of E(R) 
and large values of Var(R) to result in a large range, since organisms are forced to explore large areas to collect the resources they require to survive, 
whether they be range-resident, nomadic, or migratory. As E(R) increases or Var(R) decreases, range size should decrease nonlinearly until it reaches 
the minimum amount of space required by the organism to survive. Note that the relationship between range size and both E(R) and Var(R) cannot 
be of the form H = β0 + β1E(R)+ β2Var(R) because it would require range size to be negative for high values of E(R) or low values of Var(R)
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changes is limited and estimating changes in Var(R) is 
unreasonable. However, such an assumption is likely 
not realistic, since Var(R) often differ across space and 
over time. Generally, bounded quantities have corre-
lated means and variances, as in the case of random vari-
ables that are strictly positive (e.g., Gamma and Poisson) 
or fully bounded (e.g., Beta). For example, prey abun-
dance in a given area over time may approximately fol-
low a Poisson distribution, which implies that the mean 
and variance will be approximately equal. When prey 
are scarce, the variance will also be low, and when prey 
are abundant the variance will also be high. This occurs 
because the behavior, fitness, and predator–prey dynam-
ics of many prey are more stochastic than those of few 
prey [58]. Similarly, in the case of fully bounded random 
variables, the variance is generally lowest when the mean 
is near either boundary. For example, successful preda-
tion events are predictably scarce if the probability of 
capture is near 0, predictably common if the probability 
is near 1, and most stochastic if the probability is near 0.5 
(i.e., as far as possible from both 0 and 1; see [59]). See 
Appendix A for more information.

Recognizing changes in Var(R) helps account for the 
residual, fine-scale variation in R after accounting for 
trends in the large-scale average R (e.g., variations in 
plant phenology between years after accounting for mean 
seasonal trends, see [60]). However, when both E(R) and 
Var(R) change over time (fig. A2), disentangling changes 
in E(R) and Var(R) is not simple [61]. Statistically, this 
confound occurs because the more change one attrib-
utes to µ(t, �u) (i.e., the wigglier it is), the smaller σ 2(t, �u) 
becomes. Conversely, the smoother µ(t, �u) is, the larger 
σ 2(t, �u) becomes. Biologically, it is important because an 
organism’s perception scale determines whether it attrib-
utes a change in R to a trend in E(R) or as a stochastic 
event (i.e., due to Var(R) ; see [60]). An organism’s percep-
tion of changes in R will also depend strongly on the its 
cognitive capacities and memory [9, 62–65]. Whether 
an organism is able to predict trends in σ 2(t, �u) or not, 
environmental variability is thought to reduce a land-
scape’s energetic balance [26], which, in turn, decreases 
organisms’ fitness (e.g., [10]) and increases their range 
size. While this behavioral response occurs with both 
predictable and unpredictable stochasticity, extreme 
and rare events are more likely to have a stronger effect 
due to their unpredictability and magnitude [66, 67]. A 
few recent studies support these hypotheses [22, 26, 31, 
48, 68], but many of them are limited in geographic and 
taxonomic scales or fail to account for nonlinear rela-
tionships, so the extent to which these preliminary find-
ings can be generalized is currently unknown. Thus, 
there remains a need for developing a more complete 

understanding of how organisms’ range sizes changes 
with environmental stochasticity.

Similarly to E(R) , we hypothesize Var(R) has a non-
linear effect on an organism’s range size. When Var(R) 
is low enough that R is relatively predictable, we expect 
organisms to be range-resident with small home ranges, 
and we do not expect small changes in Var(R) to have 
a noticeable effect. As resources become increasingly 
unpredictable, we expect home range size to increase 
progressively faster (Fig.  1B) because: (1) as Var(R) 
increases, the chances of finding low R increase superlin-
early, (2) the added movement required to search for food 
increases organisms’ energetic requirements, and (3) sto-
chasticity reduces an organism’s ability to specialize and 
reduce competition for R [69]. If resources remain highly 
unpredictable over long periods of time (e.g., multiple 
lifespans), organisms may evolve or develop new and 
consistent behaviors (e.g, nomadism) or adaptations (e.g., 
increased fat storage or food caching) to buffer them-
selves against times of unpredictably low R . Conversely, if 
changes in σ 2(t, �u) are sufficiently predictable, organisms 
may learn to anticipate and prepare for times of greater 
stochasticity by pre-preemptively caching food, reducing 
energetic needs, migrating, or relying on alternative food 
sources (e.g., [70]).

Interactive effects of E(R) and Var(R)
We have provided the case for why both E(R) and Var(R) 
should be expected to affect organisms’ range size, but we 
presented the two parameters as independent drivers of 
movement. However, organisms may respond to changes 
in σ 2(t, �u) more when resources are scarce than when 
they are abundant. Consequently, an organism’s move-
ment behavior is likely to be a function of not only the 
marginal effects of E(R) and Var(R) but also their interac-
tive effects. A highly unpredictable habitat may be very 
inhospitable if resources are poor, but Var(R) may have 
little effect if resources are stochastic but always abun-
dant. Thus, we expect Var(R) to have a stronger effect on 
range size when E(R) is low, and less of an effect when 
E(R) is high. We explore this interaction effect more in 
the following section.

Simulating responses to E(R) and Var(R)
To evaluate our hypothesis of how organisms’ range 
sizes are affected by E(R) , Var(R) , and the interac-
tion effect of E(R) and Var(R) , we present the results 
from a series of quantitative simulations. To start, we 
used the ctmm package [71] for R [72] to generate 200 
tracks (see Appendix B for sensitivity analyses) from 
an Integrated Ornstein-Uhlenbeck movement model 
(IOU model, see [73]). The IOU model’s correlated 
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velocity produced tracks with directional persistence, 
but, unlike Ornstein-Uhlenbeck (OU) and Ornstein-
Uhlenbeck Foraging (OUF) models, IOU models do not 
produce spatially stationary movement, so the organ-
ism is not range-resident. Consequently, each track is 
spatially unrestricted and can be interpreted as purely 
exploratory or memoryless movement.

Each of the 200 tracks were placed on a grid with com-
mon starting point 〈0, 0〉 (fig. B1). Each time the simulated 
individual moved to a new cell, it collected R resources 
sampled from a Gamma distribution. The mean and vari-
ance of the distribution were defined by a series of deter-
ministic functions µ(t) and σ 2(t) (orange and blue lines 
in Fig. 3). The value of t was constant within each set of 
200 tracks, so the distribution R was sampled from was 
independent of both the organism’s location and its time 
spent moving. Tracks were truncated once the organism 
reached satiety, and the organism was given enough time 
to return to 〈0, 0〉 independently from the following track 
(section 2.1 of Appendix B). Finally, we fit an OUF move-
ment model [74] to the set of tracks to calculate the 95% 
Gaussian home-range size using the formula

where ς̂2 is the positional variance estimated by the 
movement model.

We designed the simulations to estimate the effects 
of E(R) and Var(R) in simplistic environments where 
organisms could only respond by searching for longer 
periods of time. Consequently, we made the following 
assumptions: 

(1)	 Environments are homogeneous for a given t . 
Given t , E(R) = µ(t) and Var(R) = σ 2(t) are con-
stant over space and within each set of 200 tracks, 
but R is random and follows a Gamma(µ(t), σ 2(t)) 
distribution.

(2)	 The are no external pressures on the simulated 
organism. Resources do not deplete, and there is no 
competition nor predator avoidance.

(3)	 The organism has a fixed daily energetic require-
ment that is independent of movement rates, and 
it cannot alter its metabolism or physiology. Addi-
tionally, the organism does not have energetic 
reserves, so excess resources cannot be carried over 
to the next track or t.

(4)	 The organism is range-resident and can only 
respond to changes in E(R) and Var(R) by altering 
its home-range size. The organism does not dis-
perse or abandon a range.

Ĥ95% = −2 log(1− 0.95)πς̂2,

(5)	 The organism’s movement is simplistic. The organ-
ism’s movement speed and direction are stochastic 
and independent of E(R) and Var(R).

(6)	 The organism has no perceptive range or mem-
ory. It is unable to detect, learn, or predict where 
resources are abundant (high E(R) ) or reliable (low 
Var(R) ) over time or space.

(7)	 Animals only move to search for food or return to 
the center of their home-range after reaching sati-
ety.

Based on the assumptions above, we constructed the fol-
lowing causal model for the simulated effects of E(R) and 
Var(R) on H (see Fig. 2 and [75]): E(R) and Var(R) were 
determined independently of each other, but they jointly 
determined the distribution of R , which, in turn, deter-
mined the distribution of H . Additional information is 
provided in Appendix B.

Figure  3 shows how simulated home-range size, H , 
responded to changes in µ(t) and σ 2(t) in scenarios 
where both functions can remain constant, increase lin-
early, oscillate cyclically, drift stochastically, or change 
erratically. The top row (constant Var(R) ) shows how H 
varies for different trends in µ(t) while Var(R) remains 
constant (like in fig. A1). As E(R) increases at a constant 
slope (linear µ(t) ), H decreases nonlinearly, with larger 
changes when E(R) is low, until it approaches the mini-
mum size required by the organism. Also note how the 
noise in the green lines also decreases as E(R) increases.

The leftmost column of Fig. 3 (constant E(R) ) illustrates 
the effects of Var(R) on H while E(R) remains constant. 

Fig. 2  Directed acyclical graph assumed for inferring the causal 
effects of E(R) and Var(R) on the distributions of R and H 
in the simulations
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Overall, both mean H and the variance around it increase 
with σ 2(t) (most visible with constant E(R) and linear 
Var(R) ). Similarly to resource-poor periods, times of 
greater stochasticity require the organism to move over 
larger areas for longer periods of time. Additionally, the 
greater in uncertainty in how much time and space the 
organism will require to reach satiety, or indeed whether 
an organism living in highly stochastic environments can 
even reach satiety within a finite amount of time.

The remaining panels in Fig. 3 illustrate how E(R) and 
Var(R) jointly affect H and how unintuitive the effects 
can be. Since E(R) and Var(R) have opposite effects on 
H , disentangling the effects can be particularly difficult 
when both parameters change in a correlated manner 
(e.g., linear E(R) and Var(R) ). When both E(R) and Var(R) 
increase linearly, H initially increases since the effect of 
Var(R) is stronger, but then decreases as the effect of E(R) 
begins to dominate. Difficulties in disentangling the two 
effects are explored in greater depth in the case study in 
the following section.

Although the temporal trends in Fig. 3 are complex and 
the effects of E(R) and Var(R) can be hard to disentan-
gle, two simple relationships emerge when H is shown as 
a function of either E(R) or Var(R) , rather than time: H 

decreases nonlinearly with E(R) and increases with Var(R) 
(panels A and B of Fig. 4). The estimated relationships thus 
follow the hypothesis we presented in Fig. 1, although we 
found that the effect of Var(R) at average E(R) was linear 
with a slight sublinear saturation at high values of Var(R) . 
However, notice that the effect of Var(R) on E(H) depends 
strongly on E(R) (panel C): When E(R) is low, E(H) is high 
and Var(R) does not have a strong effect, but when E(R) 
is high the effect of Var(R) on E(H) is exponential. Simi-
larly, E(H) decreases exponentially with E(R) except when 
Var(R) is very high.

As expected by the changes in the spread of the points in 
panels A and B of Fig. 4, the variance in H , Var(H) , also 
depends on E(R) and Var(R) (Fig. 4D–F). Since we mod-
eled H using a Gamma family of distributions, we expected 
Var(H) to increase with E(H) , but the location-scale model 
removes the assumption of a constant mean-variance rela-
tionship (i.e., constant coefficient of variation, µ(t)

σ 2(t)
 . This 

allowed us to show that the effect of R on Var(H) is much 
stronger than the effect of R on E(H) . Consequences of 
these effects are explored in the discussion section.

Fig. 3  Simulated home-range sizes, H, of an organism living in habitats where the mean and variance in resources are constant, linearly increasing, 
cyclical, drifting, or erratic over time (but homogeneous over space for a given t). Note how H decreases nonlinearly as µ(t) increases and increases 
nonlinearly as σ 2(t) increases. Additionally, the variance in H is higher when µ(t) is lower or σ 2(t) is higher, and changes in σ 2(t) have greater 
impacts when µ(t) is low
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A case study on a lowland tapir in the Brazilian 
Cerrado
The simulations in the section above support the 
hypothesis we presented in the background section, but 
they are based on assumptions that are often not met 
in real natural environments. Organisms live in spati-
otemporally heterogeneous and dynamic environments 
that promote the use of perceptual ranges, navigation, 
and memory. Together, these abilities result in selective 
space use that depends on resource availability [14] and 
resource depletion [15].

In this section, we test the hypothesis using empirical 
tracking data on a lowland tapir from the Brazilian Cer-
rado along with empirical estimates of E(R) and Var(R) . 
We measure R using Normalized Difference Vegeta-
tion Index [NDVI, see 76], a remote-sensed measure of 
landscape greenness, as a proxy for forage abundance. 
Appendix C contains additional information on how we 
modeled NDVI and the tapir’s movement using contin-
uous-time movement models [71, 77] and autocorre-
lated kernel density estimation [78–80].

Figure  5 illustrates how a tapir in the Brazilian Cer-
rado adapted its 7-day home-range size to spatiotempo-
ral changes in estimated µ(t, �u) and σ 2(t, �u) (telemetry 
data from the individual labelled as “Anna” in the dataset 
from [29]). Panels A and B show the changes in seven-
day average mean and variance in NDVI, respectively, 
experienced by the tapir during the tracking period. The 
mean and variance in NDVI were estimated using a Gen-
eralized Additive Model for Location and Scale ([81]) 
with a Beta family of distributions (NDVI values ranged 
from 0.3534 to 0.9475). Panel C shows the changes in 
the tapir’s 7-day home range over time. All 457 of the 
7-day windows had a minimum effective sample size of 
7 range crossings (range: 7.7–69.6, see [82]), and 92% had 
resolvable (i.e., non-NA) home range crossing times, all 
of which were below 17 h. Note how the tapir uses more 
space during periods of lower NDVI (e.g., August 2017) 
and less space during periods with high NDVI (Janu-
ary 2018). Additionally, when resources are scarce and 
highly unpredictable (August 2018), the tapir uses up to 
5 times more space than when resources are abundant 

Fig. 4  Effects of E(R) and Var(R) on on the mean (A–C) and variance (D–F) in simulated home-range size with 95% Bayesian credible intervals. 
While the estimated marginal effect of Var(R) on E(H) is sublinear (B), the effect of Var(R) is superlinear for high values of E(R) (C). The relationships 
were estimated using a Generalized Additive Model for Location and Scale with a Gamma location-scale family of distributions ( mgcv ::gammals ). 
Credible intervals were calculated using 10,000 samples from the posterior distribution while assuming multivariate Gaussian coefficients. 
Additional details on the model structure are provided in Appendix B
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and predictable (e.g., January 2018). Finally, panels D and 
E show the estimated (marginal) effects of µ̂(t, �u) and 
σ̂ 2(t, �u) on the tapir’s 7-day home-range size. Since µ̂(t, �u) 
and σ̂ 2(t, �u) are correlated (panel F) and spatiotemporally 
autocorrelated (panels A, B, and F), the effects of R on 
H should be modeled carefully. To avoid over-fitting the 

model, we constrained the smooth effects of µ̂(t, �u) and 
σ̂ 2(t, �u) and their interaction effect to a small basis size 
( k = 3 ). Additional information is provided in appendix 
C. The results presented in panels D–F of Fig.  5 match 
our findings from the simulations (Fig. 4A–C): The tapir’s 
7-day home range decreases with µ̂(t, �u) and increases 

Fig. 5  Effects of estimated µ(t , �u) and σ 2(t , �u) on the home-range size of a lowland tapir (Tapirus terrestris). A Trends in resource abundance 
over time, µ̂(t , �u) , estimated as the average mean NDVI at the locations visited by the tapir during a 7-day period. B Variance in resources 
over time, σ̂ 2(t , �u) , estimated as the average variance in NDVI at the locations visited by the tapir during a 7-day period. C Seven-day 95% home 
range estimated using Autocorrelated Kernel Density Estimation. D, E Estimated marginal effects of µ̂(t , �u) and σ̂ 2(t , �u) on home-range size. The 
model accounted for the marginal effects of µ̂(t , �u) , σ̂ 2(t , �u) , and their interaction effect. F Estimated home-range size in response to changes 
in both µ̂(t , �u) and σ̂ 2(t , �u) . Note how the effect of σ̂ 2(t , �u) is more pronounced when µ̂(t , �u) is low. See Appendix C for additional information. The 
tapir movement data corresponds to the individual named “Anna" from the Cerrado sample of Medici et al. [29]
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with σ̂ 2(t, �u) , and the effect of µ̂(t, �u) depends on σ̂ 2(t, �u) , 
and vice-versa. Alone, µ̂(t, �u) and σ̂ 2(t, �u) cause the tapir 
to double her home range (panels D and E), but together 
they result in an approximate 15-fold change in home-
range size (observed range: 0.8 to 12.4 km2; see panel F). 
Additionally, note how high NDVI values ( µ̂(t, �u) > 0.8 ) 
cause σ̂ 2(t, �u) to have little to no effect on home-range 
size, as indicated by the vertical contour line in panel F. 
Similar conclusions can be drawn for the animal’s dif-
fusion (i.e., area covered per unit time), which is a more 
appropriate measure of space use when animals are not 
range resident [82].

Quantifying the direct effects of E(R) and Var(R) 
on H using empirical data is more complex than with 
simulated data, and it requires a different causal frame-
work, particularly in the case of observational studies 
(as opposed to experimentally-controlled studies; see 
Fig. 6). Unlike with the simulations, E(R) and Var(R) are 
not controlled variables and instead depend on the dis-
tribution of R , which depends on a variety of other fac-
tors (that we exclude from the figure for simplicity). Both 
E(R) and Var(R) then impact H as well as habitat-level 
variables (e.g., competition, predation, etc.; indicated 
as Z ) that also affect H . Additionally, estimating R via a 
proxy (NDVI) adds satellite-level noise and confounds 
[e.g., saturation, cloud cover, spatiotemporal averaging—
indicated as S , see [83–85]. However, E(R) and Var(R) 
can be correlated to E(NDVI) and Var(NDVI) , respec-
tively, provided that analysts use models that are suffi-
ciently smooth and flexible at the relevant spatiotemporal 

scale [86]. We discuss this in further detail in the section 
below on the strengths and limitations of the empirical 
approach.

Discussion
The amount of space organisms use is determined by a 
multitude of factors [16], but the search for resources 
is often a main driver of how much and where organ-
isms move. This paper builds on earlier theoretical work 
([13], e.g., [18, 19]) and presents a unifying hypothesis 
that describes the effects of resource abundance and sto-
chasticity on organisms’ range sizes. We use quantita-
tive simulations and an empirical case study to support 
the hypothesis and show that it provides a simple frame-
work for understanding how motile organisms adapt 
their movement in dynamic environments. Separately, 
resource abundance and stochasticity have simple but 
opposing effects on organisms’ range sizes: H decreases 
with E(R) and increases with Var(R) . Together, the 
degree to which E(R) affects H depends on Var(R) , and 
vice-versa, so organisms’ responses to resource dynam-
ics can be complex. The simulated and empirical results 
suggest qualitatively similar marginal effects of E(R) and 
Var(R) , but there are differences in the estimated interac-
tive effects. In the simulated data, Var(R) has little effect 
when E(R) is low and a strong effect when E(R) is high, 
while the opposite is true for the empirical data. This dif-
ference is due to two reasons. Firstly, the shape and sym-
metry of bounded distributions such as Gamma ( R > 0 ) 
and Beta ( 0 < R < 1 ) distributions depend on both E(R) 
and Var(R) (figs. A3, A4), but Var(R) does not affect the 
shape of a Gamma distribution as much if E(R) is low 
(fig.  B3). Secondly, and perhaps more interestingly, the 
simulation approach does not account for real-world 
adaptations to E(R) and Var(R) such as selective space 
use, which are included (but not explicitly accounted for) 
in the empirical approach. Below we discuss the strengths 
and limitations of each approach.

Strengths and limitations of the simulation‑based 
approach
Our simulations are based on a simplistic environment 
with many assumptions that allowed us to estimate 
how resource abundance and stochasticity affect organ-
isms’ home-range sizes if organisms can only respond to 
changes by adapting the amount of time spent search-
ing for food (with no energetic cost to movement). The 
use of continuous-time movement models coupled with 
few drivers of movement supported realistic data that 
could be explained by straightforward causal models. The 
absence of confounding variables (e.g., predator avoid-
ance, territoriality, competition, landscape connectivity; 

Fig. 6  Directed acyclical graph assumed for inferring the causal 
effects of E(R) and Var(R) on H, where NDVI was used as a proxy for R. 
Z and S indicate confounds that result from habitat-level variables 
(e.g., competition, predation, etc.) and satellite-level variables (e.g., 
noise, cloud cover)
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see Fig. 2) or sample size limitation allowed us to ensure 
estimates were accurate and robust (sensitivity analysis 
available in Appendix B).

Deviations from the simulations offer a means of 
detecting when the underlying assumptions are inappro-
priate and how additional factors may affect organisms’ 
responses to changes in E(R) and Var(R) . For example, 
energetic costs of movement are often non-negligible and 
depend on organism size [40], movement speed [40], and 
ambient temperature [1, 87]. In addition, an organism 
may alter its movement behavior, physiology, and ener-
getic needs to buffer itself against changes in E(R) and 
Var(R) by using space selectively [68, 88–90] and adapt-
ing their behavior and physiology over time [18, 69]. 
Before or during periods of scarcity, organisms may cache 
resources [91], build up fat reserves [45], enter states of 
dormancy [92–94], or even pause fetal growth [7]. How-
ever, organisms may be unable to respond to changes in 
E(R) and Var(R) optimally due to various reasons, includ-
ing limited perceptive range [61], lack of experience [9, 
47, 63–65, 95], avoidance of competitors and predators 
[14, 96], or a physiology that is not amenable to things 
like hibernation or fat storage. Thus, organisms may relo-
cate their range to a sub-optimal location [33, 34, 97, 98], 
which may exacerbate the effects of E(R) and Var(R) on 
both mean range size and the variance around it.

Strengths and limitations of the empirical approach
There are two main advantages of taking an empirical 
approach. Firstly, modeling real-world animal movement 
data can produce scale-appropriate and easily interpret-
able estimates. Secondly, empirical data contain infor-
mation on the effects of E(R) , Var(R) , and confounding 
variables without having to design complex and time-
consuming simulations. However, it is not always possi-
ble to quantify confounding variables. For example, while 
there may be some appropriate proxies of competition, 
such as density of competitors, these variables may be 
hard to quantify, and they may not account for the con-
founding effects appropriately (i.e., the presence of com-
petitors may not reflect competitive pressure). This is 
problematic if one is interested in estimating the direct 
causal effect of E(R) and Var(R) , which requires removing 
any non-negligible confounding effects [75].

Similarly, if R non-measurable (as is often the case), R 
must be estimated with proxies such as NDVI [76], which 
may introduce complexities. While R and NDVI are cor-
related for many species (e.g., [45, 46, 95, 99–101]), the 
relationship between the two can be weak [84], satellite-
dependent [85], and nonlinear [83, 85]. This complexity 

can introduce two sources of bias: ecosystem-level biases 
(indicated as Z in the directed acyclical graph in Fig. 6) 
and satellite-level confounding variables ( S in Fig.  6). 
Examples of ecosystem-level biases are the effects of 
competition, predation, habitat connectivity, and move-
ment costs, all of which can depend on habitat quality, 
and, consequently, be correlated nonlinearly to R and 
NDVI [35, 102]. Resource-rich patches can attract larger 
amounts of competitors [14] and predators [20], which 
may, in turn, increase pressures from competition and 
predation [15, 39]. However, such pressures may result in 
both an expansion of the range [35, 102] or a contraction, 
since larger ranges can be harder to defend and result 
in higher movement costs [35, 103] and encounter rates 
[104]. Satellite-level confounds include information loss 
due to coarse spatiotemporal resolution [83, 85], satellite-
level error [83, 85, 105], and other limitations of remote 
sensing (e.g., inability to quantify specific resources or 
small-scale resource depletion). However, nonlinear 
models such as Generalized Additive Models [106] can 
help account for preferences for intermediate values of 
remotely-sensed R (e.g., young grass rather than mature 
grasslands, see [85]).

Conclusions
The work presented here provides a unifying frame-
work for viewing movement as a response to resource 
abundance and stochasticity. We provide a sensible and 
unifying hypothesis of the effects of E(R) and Var(R) 
on organisms’ range sizes and movement behavior. We 
demonstrate that organisms’ range sizes decrease with 
resource abundance, increase with resource stochastic-
ity, and that the effects of Var(R) can depend strongly on 
E(R).

Recent advances in computational power have greatly 
increased analysts’ ability to fit computationally demand-
ing models [107, 108] that allow biologists to move 
beyond only considering changes in mean conditions. 
By accounting for changes in stochasticity, we can start 
developing a more comprehensive understanding of how 
organisms adapt to the dynamic environments organ-
isms live in, including recent changes in climate [109] 
and increases in the frequency and intensity of extreme 
events [66, 67, 110–112].

Abbreviations
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Ĥ95%	� Estimated 95% home range size
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