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Movement Ecology

Fishers (Pekania pennanti) are forest 
structure specialists when resting 
and generalists when moving: behavior 
influences resource selection in a northern 
Rocky Mountain fisher population
Lucretia E. Olson1*, Joel D. Sauder2, Patrick A. Fekety3, Jessie D. Golding4, Carly W. Lewis5, Rema B. Sadak6 and 
Michael K. Schwartz1 

Abstract 

Background  Studies of animal habitat selection are important to identify and preserve the resources species 
depend on, yet often little attention is paid to how habitat needs vary depending on behavioral state. Fishers (Pekania 
pennanti) are known to be dependent on large, mature trees for resting and denning, but less is known about their 
habitat use when foraging or moving within a home range.

Methods  We used GPS locations collected during the energetically costly pre-denning season from 12 female fishers 
to determine fisher habitat selection during two critical behavioral activities: foraging (moving) or resting, with a focus 
on response to forest structure related to past forest management actions since this is a primary driver of fisher habi-
tat configuration. We characterized behavior based on high-resolution GPS and collar accelerometer data and mod-
eled fisher selection for these two behaviors within a home range (third-order selection). Additionally, we investigated 
whether fisher use of elements of forest structure or other important environmental characteristics changed as their 
availability changed, i.e., a functional response, for each behavior type.

Results  We found that fishers exhibited specialist selection when resting and generalist selection when moving, 
with resting habitat characterized by riparian drainages with dense canopy cover and moving habitat primarily 
influenced by the presence of mesic montane mixed conifer forest. Fishers were more tolerant of forest openings 
and other early succession elements when moving than resting.

Conclusions  Our results emphasize the importance of considering the differing habitat needs of animals based 
on their movement behavior when performing habitat selection analyses. We found that resting fishers are more 
specialist in their habitat needs, while foraging fishers are more generalist and will tolerate greater forest heterogene-
ity from past disturbance.
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Background
Understanding the resource needs of animals is funda-
mental to conservation biology, characterizing how an 
animal interacts with a landscape and informing manage-
ment actions for conservation. An animal’s behavior can 
impact interactions with resources in ways that scientists 
often overlook [1]. As animals move throughout a land-
scape, the distribution of items necessary for an animal’s 
survival (i.e., resource needs) frequently requires them 
to accept tradeoffs between necessities such as food, 
water, or cover [2]. Resource selection occurs as indi-
viduals make movement choices based on the resources 
they encounter and their behavioral needs at the time 
[3]. Failure to account for the influence of behavior on 
resource selection can lead to wrong conclusions about 
the importance of certain resources [2], which can lead to 
conservation actions that may not accomplish conserva-
tion goals.

While behavior impacts the resource selection of ani-
mals, it has been frequently overlooked in resource 
selection studies, often due to difficulty in determining 
the behavioral state from common GPS location meth-
ods [4], although recent advancements in accelerometer 
technology [5] and behavioral state modeling [6, 7] have 
made it easier to determine and include behavioral state 
in studies of resource selection [8]. To reduce complexity, 
studies commonly categorize a small number of behav-
ioral states, such as foraging, traveling, or resting, based 
on movement speed or tortuosity [5, 9]. These behavio-
ral states measured with movement have been shown to 
impact how animals select resources, such as a foraging 
individual choosing areas with greater food availability 
[10] or a traveling individual selecting roads for faster 
movement [11]. The role of behavior in animal resource 
selection may be particularly important for conservation-
relevant behaviors or life stages that may be more limit-
ing with respect to habitat selection than others. Nesting 
or denning, for instance, often require a specific set of 
conditions, such as low disturbance [12] or structures 
for security [13], while traveling or fast-moving animals 
may be more tolerant to human disturbance [14, 15] or a 
wider range of habitat conditions [16, 17].

Habitat selection analyses are a useful tool to under-
stand the environmental associations of a species, but 
they are subject to the assumption that selection or 
avoidance of a resource is consistent across individu-
als, while often, an animal’s selection or avoidance of a 
resource depends on how much of the resource is avail-
able to them [4]. This differential selection of resources 
in response to their availability is known as a functional 
response [18]. Functional responses in habitat selec-
tion are inferred by looking for patterns in use or selec-
tion among individuals across a gradient of resource 

availability. Deviations from consistent proportional use 
compared to availability indicate different habitat selec-
tion strategies. A classic example is a habitat tradeoff, in 
which selection is high for a given resource when avail-
ability is low (for example, a squirrel selecting open areas 
to forage in when forest cover is abundant and open areas 
are rare) but the resource becomes increasingly avoided 
as availability increases (the squirrel avoids open areas 
when they are more abundant than forest cover; [18]).

Generalist or specialist habitat selection can also be 
inferred from the presence of a functional response; spe-
cialists show stronger selection for an important resource 
when availability is low, while generalists lack a functional 
response and show proportional selection of a resource 
regardless of its availability [19]. Furthermore, the selec-
tivity of a species can vary depending on behavioral state; 
for example Canada lynx (Lynx canadensis) exhibit spe-
cialist habitat selection for dense forest and high hori-
zontal cover when foraging within their home ranges 
[20, 21], but will use open areas with little cover when 
traveling [22, 23]. Understanding these habitat selection 
strategies for a species across a range of behaviors can 
have conservation implications, since species that exhibit 
both specialist and generalist selection may require a nar-
row range of a limiting habitat element as well as more 
varied habitat conditions for generalist behaviors. While 
limiting resources are important, particularly for spe-
cialist species, research has shown that heterogenous 
landscapes are also often necessary [24], and can even 
promote population stability [25]. Thus, without an 
understanding of the importance of the full suite of land-
scape resources an animal needs across behavioral states, 
conservation decisions for species may be incompletely 
informed.

Mature forests with dense forest cover are a limiting 
resource that many species depend on and that are also 
heavily managed for human interests. Structurally com-
plex mature forests are impacted by anthropogenic and 
natural disturbances, including forest thinning through 
management for fuel reduction to mitigate large wild-
fires on public lands [26], merchantable timber harvest 
[27], and wildfires of increasing severity and extent [28] 
due in large part to anthropogenic climate change and 
past forestry practices [29, 30]. Fishers (Pekania pen-
nanti) are a forest dependent mesocarnivore  species of 
conservation concern whose habitat is likely to be influ-
enced by changes in forest structure as a result of past 
and present forest management actions, as well as natural 
disturbance.

Given the increasing threats to dense and mature for-
est in the western United States, a better understanding 
of the habitat needs of this species, particularly across 
different behavioral states which may vary in their 
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selectivity, is critical for their conservation. Especially 
in the western part of their range in the US, fishers have 
been shown to have highly specific habitat requirements 
for resting and denning [31] while less is known about 
their moving or foraging needs, given their opportunistic 
diet [32, 33]. Female fishers, particularly, may be expected 
to have specific habitat needs to protect kits during den-
ning, which occurs between March and April [34, 35], 
and to have access to adequate prey while gestating and 
rearing offspring [36]. Previous work suggests that fish-
ers may not always consistently select for the same habi-
tat elements in managed forests, depending on their 
behavioral state [37]. Thus, examining patterns of fisher 
selection for the presence of a functional response may 
allow us to detect differences in selectivity of resources 
based on behavioral state in fishers in the context of for-
est management.

Here, we explore the response of fishers to forest struc-
ture and other environmental characteristics primarily 
a result of past forest management, particularly across 
two different behaviors, moving (foraging) and resting. 
We used GPS data from 12 female fishers collected from 
2013 to 2018 to evaluate resource selection in a landscape 
with varying amounts of past forest management, focus-
ing on selection within a home range (third order selec-
tion; [38]). Additionally, we investigated the presence of 
functional responses in fisher selection of resources to 
determine whether fisher patterns of selectivity (i.e., spe-
cialist or generalist) differed between behavioral states. 
Our research questions were as follows: (1) Does fisher 
habitat selection vary based on behavioral state? (2) How 
is fisher habitat selection for each behavioral state influ-
enced by past forest management? (3) Do fishers exhibit 
functional responses in selection of environmental char-
acteristics? We predicted that fisher behavior would 
influence habitat selection preferences (i.e., fishers will 
select different characteristics when moving compared 
to resting), that fishers will be more tolerant to forest 
openings and forest structure heterogeneity when mov-
ing than when resting, and that fishers will exhibit a 
functional response if specialist patterns of selection are 
present, such as for resting behaviors that are tied to a 
specific range of forest characteristics.

Study area
Our study focused on the Northern Rocky Mountain 
population of fishers in Idaho and Montana, made up of 
a genetic mix of native and translocated animals [39, 40]. 
The study area is located in northern Idaho, USA, on the 
Nez Perce-Clearwater National Forests, federally owned 
public land available for multiple uses including timber 
production, recreation, and wildlife habitat (Fig. 1). Ele-
vation in the study area ranges from 400 to 2200 m, and 

climate is mid-latitude with warm, dry summers and cold 
winters [41]. Forest species composition is primarily dry-
mesic mixed-conifer, dominated by Douglas-fir (Pseu-
dotsuga menziesii), grand fir (Abies grandis),  and some 
lodgepole pine (Pinus contorta), ponderosa pine (Pinus 
ponderosa), subalpine fir (Abies lasiocarpa) and Engel-
mann spruce (Picea engelmannii) [42]. Annual precipi-
tation averaged 102.7 cm (range: 60–183.1 cm) per year, 
and temperature averaged 15.5  °C (range: 10°–20.1  °C) 
in summer and − 3.1  °C (range: − 7.7°–0.4  °C) in winter 
[43]. Snow depth on April 1, the date historically chosen 
to reflect total winter snowpack in the Rocky Mountains 
region [44], averaged 0.44 m (range: 0.08 -1.73 m) within 
fisher home ranges. Forest heterogeneity in the area is 
primarily the result of natural processes and past forest 
management practices; within the fisher home ranges 
included in this study, < 2% was affected by past wildfires 
(since 1950; [45]) while ~ 43% was impacted by past tim-
ber harvest (since 1950, when USFS records began to be 
consistently kept; [46]).

Fisher location data
Female fishers were live-trapped in winter (Jan-Apr) 
from 2013 to 2018 using Havahart™ live traps that were 
checked daily, baited with ungulate meat, and scented 
with beaver and skunk scents (Idaho Fish and Game 
ACUC #011211). Fishers were fitted with a GPS store-
on-board collar, and hand-held radio telemetry was used 
to periodically locate fishers to remotely download data. 
GPS collars were manufactured by eObs (Grünwald, 
Germany) and weighed ~ 69 g (< 3% of an adult female’s 
body weight). Collar GPS schedules were linked to the 
activity levels of fishers, with the frequency of GPS loca-
tions determined by fisher activity level in real time. Col-
lars were initially programmed with three differing sets 
of accelerometer categories, which corresponded to 
likely behavior modes: slow movement (resting or den-
ning) resulted in a GPS location every 120 min, moder-
ate movement in a GPS location attempted every 20 min, 
and fast movement in a GPS location taken every 5 min 
[47]. Preset thresholds from a built-in tri-axial acceler-
ometer (accelerometer settings: 18.74 Hz in a 3.5-s burst 
every 3 min) were used to distinguish these movement 
states, with threshold values taken from Brown et al. [49] 
(resting locations < 6400 and fast movement > 48,000), 
and general threshold-based sampling following [48–50]. 
Tri-axial accelerometers record animal movement along 
3 directions (forward/backward, left/right, up/down) and 
measurements are unitless unless calibrated and con-
verted to actual acceleration (m/s2); for this study we did 
not convert our measurements but used them simply to 
determine thresholds for movement categories. Unfor-
tunately, for 5 collars the intermediate speed was not 
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included, resulting in only slow (120-min fixes, acceler-
ometer < 6400) or fast (5-min fixes, accelerometer > 6400) 
movement. Since GPS sampling frequency can affect 
inference on resource selection [51, 52], we standard-
ized collar sampling frequency by subsampling all 5-min 
data into 20-min locations using the ‘amt’ package in R 
[53], which subsets location data based on desired tem-
poral spacing (i.e., temporally thins data to produce a 
specified sampling frequency). While recognizing that 
the two collar program types may be measuring slightly 
different movement behaviors (i.e., fast and intermedi-
ate speed versus any speed faster than stationary), this 
allowed consistency in temporal resolution across collars 
and defined our ‘movement’ behavior dataset as 20-min 
locations from all collars. We used points collected every 
115–120 min to represent ‘resting’ locations.

Additionally, we examined the fix success rate of GPS 
collars (the percent of successful GPS locations based 
on the collar schedule) since dense forest or cavity nest-
ing behavior can obscure the sky and prevent GPS col-
lars from determining a location [54]. The fix success rate 
of our collars was low (mean 50%, range: 27–80%), and 

therefore we performed an analysis to determine whether 
missed fixes were due to habitat conditions which could 
bias our resource selection results (see Appendix  1 for 
full analysis methods and results). Based on the results of 
this analysis, the missed fixes did not appear to be influ-
enced by environmental conditions but instead depended 
more on the individual fisher (Table  4). Thus, we felt 
confident in proceeding with our habitat selection analy-
ses and concluding that fix success was not consistently 
affected by environmental heterogeneity and therefore 
unlikely to bias results.

Environmental covariates
We selected covariates based on environmental char-
acteristics known to be important to fishers [55–57] 
including forest composition, structure, and topogra-
phy, specifically as these relate to aspects of past forest 
management such as forest openings or edges (Table 5). 
We included Existing Vegetation Type (EVT), a remotely 
sensed categorical landcover layer, as measured by Land-
fire v1.4.0 [42], based on satellite imagery from 2013 to 
2014. Based on fisher GPS locations, we selected the most 

Fig. 1  Location of the study area in the Nez Perce-Clearwater National Forests, Idaho, USA, 2013–2018. Dark gray area represents publicly 
owned land while light gray represents private ownership. The dark-outlined polygons show the spatial area for which LiDAR data was available 
and the colors indicate sparse (blue; 0–25%) and open (red; 26–50%) canopy cover, while gray-scale areas within the LiDAR footprint indicate > 50% 
canopy cover; dark blue polygons are fisher minimum convex polygon home ranges. Inset shows the study area relative to Idaho and the western 
United States
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prevalent EVT categories and converted them into single 
category binary variables (i.e., EVT category present or 
not) and then into proportions by taking the mean of all 
raster cells within a given circular neighborhood around 
each cell. This resulted in five EVT covariates, including 
mesic montane mixed conifer forest, dry-mesic montane 
mixed conifer forest, subalpine mesic-wet spruce-fir for-
est, riparian forest, and dry-mesic montane Douglas-fir 
forest. We considered topographic features including 
elevation, linearized aspect [58], slope, and topographic 
position index, an index of the relative elevation of an 
area compared to its surroundings, with negative values 
indicating drainages and positive values indicating ridges 
[59].

LiDAR-derived covariates calculated using FUSION 
software [60] were used to represent fine-scale charac-
teristics of forest structure and canopy cover. Existing 
LiDAR (light detection and ranging) metrics from Fekety 
et al. [61] used in this study included canopy relief ratio, 
standard deviation of LiDAR heights, 25th and 50th 
LiDAR height percentiles, percent returns above 1 m, 
proportion of returns below 2  m, proportion of returns 
above 20  m, and horizontal cover. The USDA North-
ern Region Geospatial Group provided LiDAR-derived 
canopy cover and canopy height products. Additionally, 
we included aboveground biomass estimates generated 
from LiDAR, Landsat, topographic, and climate variables 
[62]. LiDAR data were collected from 2009 to 2016; since 
fisher locations were collected from 2013 to 2018, some 
locations occurred after a new natural or anthropogenic 
disturbance had changed the forest characteristics from 
the measured LiDAR conditions. To prevent error, we 
determined the location of disturbances that occurred 
between the time of LiDAR collection and fisher use of 
an area using a time series analysis of Landsat-derived 
normalized burn ratio using the LandTrendr algorithm 
[63]. We discarded any fisher points in these areas from 
the analysis (few points were discarded: 40 out of 4425 
for the 20 min dataset, 0 points for the 120 min dataset). 
For all covariates, we considered three spatial scales to 
allow for differences in the scale of selection across dif-
ferent movement behaviors [64, 65]. We based our scales 
on distances determined by the 10 min, hourly, and 
daily average fisher movement distances (small = 100 m, 
medium = 400 m, and large = 4000 m scale, respectively), 
to match fisher selection at the home range scale.

To create covariates relevant to the structure and het-
erogeneity resulting from past forest management and 
natural forest openings, we created a polygon-based 
depiction of forest opening patches using a continuous 
canopy cover covariate from the LiDAR data at 10  m 
resolution (Fig. 2). First, we split canopy cover into four 
categories based on quartile thresholds (≤ 25%, 26–50%, 

51–75%, > 75%). Next, we performed a neighborhood 
smoothing approach to remove small clusters or individ-
ual raster cells that were different from their surround-
ing matrix to reduce error and generate forest patches 
consistent with forest management actions; we used focal 
statistics to calculate the mode of a 30 m2 neighborhood 
around each cell and then repeated this process on the 
resulting raster. Finally, we converted the raster to poly-
gons and discarded polygons that were less than 0.4 ha 
in size, resulting in polygons that represented four cat-
egories of canopy cover: sparse (0–25%), open (26–50%), 
moderate (51–75%), and dense (76–100%; see Fig.  2 for 
visual example). We used these polygonised patches to 
create four covariates related to forest openings: cate-
gorical patch canopy cover, distance to patch edge, patch 
size, and patch edge density (as an index of forest frag-
mentation, with low patch edge density equal to low for-
est fragmentation). We calculated patch edge density by 
converting polygons to lines and calculating distance of 
lines per unit area at each of our three spatial scales.

Third order selection: resource selection function
To address our first question, that fishers will base their 
habitat selection preferences on different forest stand 
characteristics when moving compared to resting, we 
carried out separate third order resource selection func-
tions (RSF; [66]) to evaluate habitat selection within 
a home range, for each behavior. For movement loca-
tions, we used the 20 min dataset (see Fisher Location 
Data above for further details). For resting locations, we 
selected locations with sampling intervals of 120 min (± 5 
min), which indicated slow or stationary locations based 
on collar accelerometers. We created home ranges for 
fishers using 100% minimum convex polygons and buff-
ered home ranges by 5  km (based on mean 24-h fisher 
movement distance: 4.6 km, IQR = 2.1–7.4 km) to avoid 
edge effects and ensure an adequate availability sam-
ple [67]. We sampled available locations for each fisher 
within home ranges, with both moving and resting avail-
ability samples chosen from the same pool of random 
locations. We based the number of available locations on 
the number of fisher locations, in a ratio of 1:20.

For each behavior dataset, moving or resting, we 
then fit a set of candidate models chosen to test various 
hypotheses related to forest structure and composition 
to determine whether differences in selection were pre-
sent between behaviors at the home range scale. We first 
ran univariate models to determine the most predictive 
scale (small, medium, or large) for each covariate and 
calculated pairwise correlation coefficients to prevent 
any covariates with |r|> 0.6 from occurring in the same 
model. We constructed candidate models along the fol-
lowing hypotheses: (1) abiotic: topographic features are 
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most predictive of fisher selection, (2) fishers base their 
habitat selection on riparian forest features including 
large trees, canopy cover, horizontal cover, species com-
position, and topographic drainages, (3) fisher selection 
is most influenced by forest species composition, (4) fisher 
habitat selection is most influenced by forest openings, (5) 
patch edge related features are most important to fishers, 
(6) forest structure covariates are most predictive of fisher 
habitat selection (see Table 1 for specific covariates and 
scales included in each model).

To address our second question, how fisher habi-
tat selection for each behavioral state is influenced 
by past forest management, we performed a similar 
resource selection function analysis, but included all 
fisher locations (i.e., both moving and resting locations 
combined). We then tested whether fisher selection of 
forest structure elements related to past forest man-
agement changed depending on movement state. We 
fit four models, one for each past forest management 
metric (categorical canopy cover, patch edge density, 
patch size, and distance to patch edge) and included 

Fig. 2  Example of the amount of forest management within a fisher home range (black polygon), from the fisher with the least amount of dense 
canopy cover (top panels) to the most amount of dense canopy cover (bottom panels) in northern Idaho, 2013–2018. Fisher GPS locations are 
represented by black dots. This graphic also illustrates the conversion of a continuous metric of canopy cover (left) into a categorical polygon-based 
depiction (right; colors indicate sparse: ≤ 25%, open: 26–50%, moderate: 51–75%, and dense: > 75%, respectively) to allow delineation of open 
patches and calculation of patch size, distance to edge, and patch edge density
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movement state (resting vs. moving) as an interaction 
term. For the patch size and distance to patch edge 
models, we fitted three-way interactions with move-
ment state and categorical canopy cover, as fisher 
selection for these forest structure metrics may vary 
depending on the level of canopy cover in which they 
occur (i.e., larger patch sizes of low levels of canopy 
cover may be avoided, while larger patch sizes of high 
levels of canopy cover may be selected).

For all RSF models we used generalized linear mixed 
models (GLMM) with a binomial distribution and indi-
vidual as a random intercept to account for repeated 
sampling of individuals [68]. We fit models using the 
‘glmmTMB’ v.1.1.2.3 package [69] and compared model 
fit using the ‘AICcmodavg’ v.2.3-1 package [70] in 

program R and selected the top model based on AICc. 
We standardized all covariates by dividing by the mean 
and subtracting the standard deviation to facilitate com-
parison of model coefficients.

Functional response
We calculated functional responses to environmen-
tal characteristics considered in RSF models and 
past forest management metrics for both moving and 
resting fisher behaviors to address our third ques-
tion. To calculate a functional response, we used lin-
ear models to test whether the relationship between 
use and availability of a given covariate for all fishers 
remained proportional across the range of availability 
in fisher home ranges. We used log of mean use as the 

Table 1  Model selection table for moving and resting female fisher resource selection functions (RSF) for six candidate models based 
on likely environmental hypotheses

EVT3045: Northern Rocky Mountain Dry-Mesic Montana Mixed Conifer Forest

EVT3047: Northern Rocky Mountain Mesic Montane Mixed Conifer Forest

EVT3056: Rocky Mountain Subalpine Mesic-Wet Spruce-Fir Forest and Woodland

EVT3159: Rocky Mountain Montane Riparian Forest and Woodland

EVT3227: Dry-mesic Montane Douglas-fir Forest

TPI: Topographic Position Index

Strata20: Proportion LiDAR returns above 20 m

CanLevel: Categorical canopy cover

HtStd: Standard deviation of LiDAR height above ground

Pct1st: Percent of LiDAR first returns above 1 m

AGB: Aboveground biomass

StrataBelow2: Proportion of LiDAR returns below 2 m

For each model, the covariates included, number of model parameters (K), AICc, ΔAICc, AICc model weight (w), and the log likelihood (LL) are given. The best-
performing spatial scale for the neighborhood at which the covariates were evaluated (100m, 400m, 4000m) is given in subscript for each covariate

Hypothesis Model covariates K AICc ΔAICc w LL

Moving models

 Species 
Comp

EVT3045400 + EVT30474k + EVT3056400 + EVT31594k + EVT32274k 7 33,731.64 0 1 − 16,858.8

 Riparian 
forest

EVT31594k + TPI4k + CanopyCover400 + Strata20400 + HorizontalCover100 7 33,740.67 9.03 0 − 16,863.3

 Abiotic Slope400 + TPI100 + Elevation100 + LinearAspect4k 6 34,035.89 304.25 0 − 17,011.9

 Patch Edges EdgeDensity4k + CanLevel*DistanceToEdge + HorizontalCover100 + CanopyHeight400 + HtStd4k 13 34,127.48 395.84 0 − 17,050.7

 Openings EdgeDensity4k + CanLevel + Pct1st400 + PatchSize 8 34,128.22 396.58 0 − 17,056.1

 Structure HorizontalCover100 + AGB4k + Pct1st400 + StrataBelow2400 + Strata20100 7 34,180.25 448.61 0 − 17,083.1

 Null Null 2 35,583.88 1852.24 0 − 17,789.9

Resting Models

 Riparian 
Forest

EVT31594k + TPI4k + CanopyCover400 + Strata20400 + HorizontalCover100 7 4266.53 0 1 − 2126.26

 Structure HorizontalCover100 + AGB4k + Pct1st400 + StrataBelow2400 + Strata20100 8 4287.97 21.44 0 − 2135.98

 Abiotic Slope400 + TPI100 + Elevation100 + LinearAspect4k 6 4352.78 86.25 0 − 2170.39

 Openings EdgeDensity4k + CanLevel + Pct1st400 + PatchSize 8 4395.44 128.91 0 − 2189.71

 Species 
comp

EVT3045400 + EVT30474k + EVTt3056400 + EVT31594k + EVT32274k 7 4455.17 188.64 0 − 2220.58

 Patch edges EdgeDensity4k + CanLevel*DistanceToEdge + HorizontalCover100 + CanopyHeight400 + HtStd4k 12 4512.54 246.01 0 − 2244.26

 Null Null 2 4772.11 505.58 0 − 2384.05
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dependent variable with log of mean availability as the 
predictor, and individuals as data points (n = 12) fol-
lowing Holbrook et al. [71] and Mysterud and Ims [18]. 
We calculated 90% confidence intervals for modeled 
intercept and slope and inferred a functional response 
to be present when slope was > 1, indicating increasing 
use as availability increased, or < 1, indicating decreas-
ing use as availability increased. We inferred propor-
tional habitat use equal to availability (i.e., generalist 
selection, no functional response) when the slope = 1 
and the intercept = 0 [21, 71]. We plotted functional 
responses as the mean use versus mean availability to 
allow data visualization without the log scale.

Results
We captured 12 fishers from 2013 to 2018; collars 
recorded locations from Jan to Apr, for a median 27 
days (range: 9–69) and a total of 12,704 GPS locations 
(median locations per individual: 767, range: 348–
4446). Of these, 9257 locations were collected at the 
5-min or 20-min ‘movement’ threshold and 593 were 
‘resting’ locations collected at the 120-min threshold. 
Median fisher minimum convex polygon home range 
size (not including the 5  km buffer for analysis) was 
22.4 km2 (range: 9.3–62.4 km2); average movement 
distance for 5 min movement steps was 78 m (Inter-
quartile Range (IQR) = 25–149 m), hourly movement 
distance was 370 m (IQR = 55–978 m), and 24-h daily 
movement distance was 4558 m (IQR = 2148–7374 m). 
Fisher home ranges contained abundant dense can-
opy cover (median: 79.0%, IQR: 66.1–81.8%) and low 

amounts of sparse (median: 2.6%, IQR: 1.8–7.4%), 
open (median: 4.3%, IQR: 3.7–7.1%), and moderate 
canopy cover (median: 15.9%, IQR: 12.6–20.4%; see 
Fig. 2 for examples).

Third order RSF
In agreement with our first prediction, that fishers will 
base their habitat selection preferences on different char-
acteristics depending on their behavior, we found dif-
ferences in fisher habitat selection when moving versus 
resting. When moving (20 min locations, n = 4425), the 
most supported model was that corresponding with the 
species composition hypothesis (Table  1; selected spatial 
scales given in subscript for each covariate), with the 
strongest effects (as indicated by magnitude of model 
coefficients) those of selection for mesic montane mixed 
conifer forest (Table 2).

When resting (120 min locations, n = 593), features 
reflecting the riparian forest hypothesis were the most 
supported (Table  1; selected spatial scales given in sub-
script for each covariate), with canopy cover contributing 
the most to the model (Table 2). Fishers at resting loca-
tions selected areas with greater percentage of montane 
riparian forest and woodland, greater percent canopy 
cover, lower proportion of LiDAR returns above 20 m 
(i.e., tall trees), and lower TPI values, indicating selection 
for drainages.

In support of our second prediction, that fishers will 
be more tolerant to forest openings and forest structure 
heterogeneity when moving than when resting, we found 
a significant effect of moving versus resting for categori-
cal canopy cover and forest fragmentation (patch edge 

Table 2  Moving and resting RSF model results; parameters for the best-performing generalized linear mixed model (GLMM) of female 
fisher movement and resting habitat selection

Standardized model coefficients (β), their standard error, and 95% confidence intervals are reported; coefficients were considered significant if confidence intervals 
did not include 0. The best-performing spatial scale for the neighborhood at which the covariates were evaluated (100m, 400m, 4000m) is given in subscript for each 
covariate

β Std. Error Lower 95% Upper 95%

Model Covariate

 Intercept − 3.31 0.25 − 3.80 − 2.81

 Dry-Mesic Montane Mixed Conifer400 0.29 0.03 0.24 0.34

 Mesic Montane Mixed Conifer4k 0.88 0.05 0.79 0.97

 Subalpine Mesic-Wet Spruce-Fir Forest400 − 0.35 0.04 − 0.43 − 0.26

 Montane Riparian Forest4k 0.31 0.03 0.25 0.36

 Dry-mesic Montane Douglas-fir Forest4k − 0.09 0.03 − 0.16 − 0.03

Resting Model

 Intercept − 3.36 0.20 − 3.75 − 2.97

 Montane Riparian Forest4k 0.51 0.07 0.38 0.64

 TPI100 − 0.46 0.04 − 0.54 − 0.39

 CanopyCover400 1.20 0.10 1.00 1.39

 Strata20400 − 0.25 0.06 − 0.37 − 0.12

 HorizontalCover100 − 0.05 0.06 − 0.16 0.06
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density). For moving fishers, 81.3% of locations were in 
dense (> 76%) canopy, 13.2% in moderate (51–75%) can-
opy, 3.4% in open (26–50%) canopy, and 1.5% in sparse 
(0–25%) canopy. Of all resting locations (n = 593), 94.4% 
were in forest patches with dense canopy cover, with 
only 5.0% (30 locations) in moderate canopy patches 
and < 1% in patches with open or sparse canopy (1 loca-
tion 0–25%, 2 locations 26–50%; see Table 6 for a sum-
mary of past forest management metrics at fisher used 
locations). Based on GLMMs, resting fishers were more 
likely than moving fishers to select dense canopy, while 
moving fishers were more likely than resting to select 
moderate, open, or sparse canopy (Table  3, Fig.  3); all 
fishers selected for greater canopy cover in general. Simi-
larly, resting fishers were more likely to select low patch 
edge density (lower forest fragmentation) while mov-
ing fishers were more likely to select higher patch edge 
density (greater forest fragmentation; Fig. 3); in general, 
however, all fishers selected lower fragmentation. There 
were no consistent differences between moving and rest-
ing behaviors and fisher selection for patch size (Table 3). 
Compared to dense (> 76%) canopy (which we set as the 
reference level and in which fishers showed selection for 
larger patch size), fishers selected smaller patches in all 
lower levels of canopy cover. Resting and moving fish-
ers did not differ in their patch size selection except in 
moderate (51–75%) canopy compared to dense (> 76%) 
canopy, with greater selection by moving fishers for small 
patch sizes in moderate canopy (Table  3, Fig.  6); how-
ever, low sample size of resting fisher locations in open 
(26–50%) and sparse (≤ 25%) canopy cover made dif-
ferences in these categories difficult to detect (Table  3). 
Fisher selection for distance to patch edge differed 
between moving and resting behaviors, with moving fish-
ers more likely to be nearer to edges than resting fisher, 
and for canopy cover categories, with fishers more likely 
to be near edges in moderate, open, or sparse canopy and 
far from edges in dense canopy. However the three-way 
interaction was not supported and differences in distance 
to patch edge between canopy cover categories for mov-
ing and resting locations were not detectable (Table  3), 
again likely due to small sample size in lower canopy 
cover categories (Table 3, Fig. 6).

Functional response
We found differences between moving and resting fishers 
in the presence of functional responses for habitat-related 
covariates. For moving fishers, we found proportional use 
of all covariates and no evidence of functional response, 
indicating a generalist response to all habitat related 
covariates (Fig.  4; Table  7). For fishers at rest, however, 
several covariates were used at greater proportions 
when their availability was low, indicating a specialist 

functional response (Fig. 4; Table 7; [71, 72]). When rest-
ing, fishers used patches with taller trees, greater canopy 
cover, and lower TPI values at greater proportion when 
these resources were less available and decreased their 
use to proportional as availability increased, consistent 
with a specialist functional response (Table  7). Fisher 
selection of covariates related to openings and het-
erogeneity did not change as their availability changed, 
however. For moving and resting fishers, we found no 
consistent significant deviation from use proportional 
to availability as availability of patch canopy cover, patch 
edge density, mean patch size, or distance to patch edge 
changed across home ranges (Table  7). Resting fishers 
had too few points in the low canopy cover categories 
(open and sparse) to calculate functional responses for 
these groups (Table 7).

Discussion
Identifying and maintaining the resource needs of vul-
nerable species is one of the cornerstones of conserva-
tion biology, but variation in those needs depending on 
an individual’s behavior is often overlooked. The resource 
requirements of fishers when resting and denning are 
narrow and consequently well-studied; ideal foraging 
conditions are less defined [37], particularly in the Rocky 
Mountain population of fishers. Our work supports 
the idea that female fishers are both a habitat specialist 
and a habitat generalist; resting and denning behaviors 
require a more specific set of conditions while foraging 
habitat requirements are more general. When resting, 
fishers selected forest characteristics related to composi-
tion and structure, while only broad vegetation type was 
most predictive of fishers when moving. Resting fishers 
selected more contiguous forest and stayed farther from 
patch edges, and both moving and resting fishers avoided 
patches with lower canopy cover, although this avoid-
ance was stronger for resting individuals. Response to 
forest characteristics associated with past forest manage-
ment, such as patch edges, forest fragmentation, or open 
patches, did not change as their availability changed, 
indicating a possible tolerance for early seral forest struc-
ture among foraging fishers despite their known depend-
ence on mature forests [55].

A probable mechanism for the specialist/generalist pat-
tern we detected is that fishers are dietary generalists [32, 
33, 73, 74, 108] while also preferring structurally complex 
forest for denning and resting. This pattern of selection 
may be an attempt to maximize a tradeoff: while mature 
forests with dense canopy and little understory offer rest-
ing and denning opportunities, these forest stands are 
often lacking in prey availability. In contrast, densities of 
prey species are often high in openings that have recently 
been disturbed (e.g., chipmunks and small mammals; 
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Table 3  Model results of generalized linear mixed models (GLMM) of female fisher habitat selection as the result of an interaction 
between movement and resting behavioral states and past forest management related covariates (canopy cover, patch edge density, 
patch size, and distance to patch edge)

β Std. Error Lower 95% Upper 95%

Canopy Category

 Intercept − 2.86 0.03 − 2.92 − 2.80

 CanLevel25 − 1.16 0.13 − 1.41 − 0.91

 CanLevel50 − 0.78 0.09 − 0.95 − 0.62

 CanLevel75 − 0.34 0.05 − 0.43 − 0.25

 Resting 0.13 0.05 0.04 0.23

 CanLevel25:Resting − 2.16 1.01 − 4.14 − 0.18

 CanLevel50:Resting − 2.37 0.71 − 3.77 − 0.97

 CanLevel75:Resting − 1.08 0.19 − 1.46 − 0.70

 FisherID Random Intercept 0.08 0.04 0.15

Patch Edge Density

 Intercept − 3.01 0.07 − 3.15 − 2.87

 EdgeDensity400 − 0.43 0.02 − 0.47 − 0.40

 Resting − 0.12 0.05 − 0.23 − 0.02

 EdgeDensity400:Resting − 0.28 0.06 − 0.40 − 0.17

 FisherID Random Intercept 0.24 0.15 0.36

Patch Size

 Intercept − 2.94 0.09 − 3.11 − 2.77

 PatchSize 0.25 0.03 0.18 0.31

 CanLevel25 − 41.64 12.13 − 65.42 − 17.86

 CanLevel50 − 66.05 13.07 − 91.66 − 40.44

 CanLevel75 − 5.52 0.72 − 6.94 − 4.10

 Resting 0.11 0.05 0.01 0.22

 PatchSize:CanLevel25 − 33.34 9.88 − 52.69 − 13.98

 PatchSize:CanLevel50 − 53.41 10.62 − 74.23 − 32.59

 PatchSize:CanLevel75 − 4.64 0.60 − 5.82 − 3.46

 PatchSize:Resting 0.07 0.07 − 0.06 0.20

 CanLevel25:Resting − 1684.00 2938.00 − 7442.27 4075.18

 CanLevel50:Resting 18.01 89.38 − 157.17 193.19

 CanLevel75:Resting 3.94 1.31 1.37 6.51

 PatchSize:CanLevel25:Resting − 1363.00 2381.00 − 6030.19 3303.80

 PatchSize:CanLevel50:Resting 16.48 72.69 − 125.98 158.94

 PatchSize:CanLevel75:Resting 4.17 1.12 1.99 6.36

 FisherID Random Intercept 0.29 0.19 0.46

Distance to Edge

 Intercept − 2.91 0.04 − 2.99 − 2.82

 CanLevel25 − 2.78 0.59 − 3.94 − 1.62

 CanLevel50 − 4.01 1.00 − 5.97 − 2.05

 CanLevel75 − 1.16 0.35 − 1.86 − 0.47

 DistToEdge 0.18 0.01 0.15 0.21

 Resting 0.10 0.05 0.00 0.20

 CanLevel25:DistToEdge − 2.78 0.88 − 4.50 − 1.07

 CanLevel50:DistToEdge − 4.69 1.38 − 7.39 − 2.00

 CanLevel75:DistToEdge − 1.40 0.50 − 2.38 − 0.42

 CanLevel25:Resting − 25.02 31.39 − 86.55 36.52

 CanLevel50:Resting − 27.07 25.96 − 77.94 23.80

 CanLevel75:Resting − 2.19 1.71 − 5.54 1.16

 DistToEdge:Resting 0.08 0.04 0.00 0.15

 CanLevel25:DistToEdge:Resting − 31.05 41.21 − 111.82 49.73
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[75]) or in regenerating forest stands with dense saplings 
(e.g., snowshoe hares; [76, 77]). The fishers in our study 
were monitored from January through April, an impor-
tant period leading up to and including denning and 
likely parturition [34, 36], and a season often character-
ized by lower prey availability, when successful foraging 
was likely to be particularly important to female fishers. 
Selection differences in fishers based on movement or 
resting behavior are supported by previous work, with 
multiple studies confirming strong selection for large 
trees with cavities when denning or resting [31, 55, 78], 
while foraging habitat is less limiting and less well char-
acterized [37]. For example, West Coast fisher population 
studies indicate that fishers use a broad range of tree sizes 
and ages [37].

Like previous studies, we found that resting fisher 
habitat was best predicted by covariates related to for-
est structure at the stand scale. Resting fishers selected 
areas with greater canopy cover, more riparian habitat, 
and arranged in topographic drainages, all characteris-
tic of the type of “classic” fisher habitat (i.e., large, wet, 
decaying trees) reported throughout the literature [31, 
55, 79] in the western portion of fisher range. While 
moving, however, the more general forest species com-
position characteristics were most predictive of fisher 

habitat; fisher presence was most strongly predicted by 
mesic montane mixed conifer forest, while also exhibit-
ing a preference for riparian forest and an avoidance of 
spruce-fir forest and drier Douglas-fir forest. The North-
ern Rocky Mountain fisher population is not well stud-
ied, and habitat selection has generally been assessed at 
the home range level or larger, without consideration for 
differences in fisher behavior. Thus, strong selection for 
resting and denning habitat, such as mature forest [56], 
large diameter trees [55], and mesic forest with tall trees 
[80], has been detected across multiple studies, while the 
more generalist selection signature of moving fishers may 
be swamped by this signal and go undetected. Sauder and 
Rachlow [57], however, found that fisher core areas in 
this population were characterized by greater heteroge-
neity of patch edges and canopy cover, indicating a pref-
erence for a more general array of forest characteristics 
in high use areas. Due to the movement thresholds of our 
collars, the movement state in our study is also a more 
general category than resting, potentially encompassing 
activities including foraging, territorial patrolling, and 
traveling between high use areas, the combination of 
which may contribute to the generalist signature.

Interestingly, we found no evidence of a functional 
response for moving female fishers in any of the habitat 

Table 3  (continued)

Standardized model coefficients (β), their standard error, and 95% confidence intervals are reported; coefficients were considered significant if confidence intervals 
did not include 0

Fig. 3  Plots show predicted results of a generalized linear mixed model of fisher relative probability of selection in response to an interaction 
between moving versus resting behavior and percent canopy cover (left) or forest fragmentation (patch edge density, km/km2, right). Fishers select 
higher forest cover in general and when resting compared to moving, and lower forest fragmentation in general and when resting compared 
to moving

β Std. Error Lower 95% Upper 95%

 CanLevel50:DistToEdge:Resting − 32.94 33.87 − 99.33 33.44

 CanLevel75:DistToEdge:Resting − 1.71 2.39 − 6.40 2.98

 FisherID Random Intercept 0.14 0.08 0.22
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or disturbance covariates we examined; for instance, while 
fishers avoided forest patches with < 75% cover while mov-
ing, avoidance stayed consistent regardless of how much 
of a fisher’s home range consisted of this more open can-
opy. Functional responses are often detected in response 
to disturbance-related covariates, with responses to a 
given resource changing depending on how much of the 
resource an individual is exposed to [18, 71]. For instance, 
cougars (Puma concolor)  showed decreased avoidance 
of certain anthropogenic disturbances when their home 
ranges were more disturbed [14], presumably making 
the ‘best of a bad job’ by selecting for the least negative 
impact in a sub-optimal home range [81]. Alternatively, 
especially preferred resources may always be selected dis-
proportionately above their availability, such as Canada 
lynx which consistently select for certain forest types 
even when availability is high [82]. Selection differences 
depending on availability are especially important in the 
case of habitat disturbances, such as decreased forest 
structure and canopy from forest management [83] or 
encroaching human development [14], since individuals 

may seem tolerant to disturbance until it reaches a certain 
threshold [84].

There are several factors which may contribute to the 
lack of functional response to past forest management 
covariates. First, use in proportion to availability is a 
characteristic of generalist selection, in which animals 
are behaviorally flexible enough to make a living out of 
whatever resources are at hand. There is some support 
for this hypothesis in the literature, in which foraging 
fishers have been noted to have more general habitat 
use and broader prey selection, even eating a surprising 
amount of alternative prey sources [33]. Carnivores in 
general are often habitat generalists, capable of altering 
their habitat selection to take advantage of shifting prey 
populations [85]. Second, habitat selection is hierarchi-
cal, with fine-scale habitat choices limited by the larger-
scale choices already made through population and home 
range placement choices [38]. For fishers in our study, 
the amount of disturbed habitat in home ranges was low 
(average of ~ 7% with < 50% canopy cover), indicating that 
selection may have already taken place at a coarser scale, 
resulting in universally low availability of disturbed habi-
tat at a level that fishers can tolerate, or a range of dis-
turbed habitat availability that is too narrow to detect a 
functional response. Our trapping experience supports 
this, anecdotally, as a primary goal of this study was to 
examine fisher habitat across a range of managed forests, 
but we were unsuccessful in trapping any fishers in areas 
with a high proportion of past disturbance. Finally, forag-
ing fishers may be more tolerant of forest openings and 
heterogeneity from past management than expected, and 
willing to trade the risk of using more open canopy for 
the increase in prey associated with the greater ground 
cover and understory of early successional stands [75]. 
Smith [86] found that fishers in Oregon continued to use 
recently thinned habitat in their home ranges given that 
sufficient den sites and canopy cover > 50% was main-
tained within 2 km in the home range, Green et al. [87] 
showed that fishers translocated to an area in the Sierra 
Nevada of California with high levels of current and 
historical forest management survived and increased in 
abundance over 7 years of monitoring, and Niblett et al. 
[88] found that fisher home ranges in California could 
contain up to 25% of open canopy provided that enough 
large trees for den locations were present.

The consideration of fisher behavior in this study 
allowed a more complete understanding of fisher habitat 
selection beyond their common perception as a highly 
specialized old-forest species. If we had not considered 
fisher movement behavior when analyzing selection pat-
terns, we would potentially misidentify the landscape 
characteristics that fishers need to complete important 
life history stages, including foraging behavior during 

Fig. 4  Plots show results of a linear model of average use 
versus average availability across fishers (each data point 
represents an individual), i.e,. a functional response analysis. 
Results indicate a generalist pattern of selection in moving fishers 
(left) and a specialist pattern of selection in resting fishers (right) 
for two habitat covariates, percent canopy cover (top) and canopy 
height (bottom). Black lines indicate hypothetical proportional use 
(intercept = 0, slope = 1), red lines show modeled fisher results, gray 
shaded areas are 90% confidence intervals, and red asterisks indicate 
significant deviation from proportional use. For moving fishers, 
use of habitat covariates remains proportional to their availability 
as availability changes, while resting fishers show greater use (points 
above the black line) of covariates when at low availability which 
decreases to proportional use (points on the black line) at higher 
availability. See Table 7 for all functional response results
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gestation and early denning. Since our study focused only 
on female fishers due to their importance in maintain-
ing a reproductive population, caution should be used 
in applying these results to male fishers. While males are 
likely to be broadly similar in their habitat needs for rest-
ing and foraging conditions, more research is needed to 
determine if and how behaviors that may differ by sex, 
such as territorial patrolling or mate-searching, influence 
habitat selection in this species. Tolerance to risk is also 
often a sex-biased behavior, with males more willing to 
accept greater risk than reproductive females [89, 90], 
which may have implications for tolerance of past forest 
management as well. Our results support the considera-
tion of behavioral state as part of RSF analyses to provide 
important connections to species biology and a more 
nuanced understanding of habitat selection. The ability 
to more strongly connect RSF analyses to the entirety of 
a species’ habitat needs will allow more biologically real-
istic predictions of important habitat, which in turn will 
allow more informed conservation management.

Management implications
Our results indicate a multi-level response by female fish-
ers to forest openings and forest heterogeneity from past 
forest management, with home ranges containing low 
amounts of open canopy cover and fishers also avoiding 
forest openings and fragmentation while both moving 
and resting. Fishers stayed close to patch edges and used 
smaller patches of forest openings when canopy cover was 
lower (≤ 75%), and resting locations were almost nonex-
istent in any forest patch with ≤ 75% cover, indicative of 
their likely desire to remain safe from predation when not 
trying to acquire food resources. In sparse (≤ 25%) canopy 
areas, the average patch size used by moving fishers was 
2.4 ha, and the average distance from a patch edge was 9.8 
m (see Table  6  for additional summaries of forest struc-
ture related to past forest management). Female fisher 
home ranges contained only limited amounts of low can-
opy cover patch openings, and the majority of fisher loca-
tions (94% of resting fisher locations and 81% of moving 
fisher locations) were in dense (> 76%) canopy, indicating 
that selection had already taken place to avoid open areas 
when fishers were placing home ranges. Thus, an increase 
in active forest management that results in large patches 
of open canopy, for example from thinning or clearcut-
ting, may prove a barrier to fisher movement and a nega-
tive impact on foraging success. The lack of functional 
response by moving fishers in our study to increases in 
home range heterogeneity, however, suggest there may 
be some tolerance to forest openings and heterogene-
ity, at least at the levels of availability found within home 
ranges here (i.e., average of ~ 7% of home range with < 50% 
canopy cover). Many studies also point out the necessity 

of maintaining large trees, live and dead, on the landscape 
when performing thinning or salvage forest management 
[86, 91], and the results of our analysis on resting habitat 
selection concur. Large trees capable of providing cavities 
for nesting are extremely slow to form and may be declin-
ing on the landscape due to fire and timber management 
[92, 93]. Therefore, despite the more generalist needs 
of fishers when moving, the protection of large trees 
and areas of dense canopy when planning management 
actions is likely of great importance to maintain a repro-
ductively successful population of fishers.

Appendix 1
Fix success analysis
A concern when tracking species, such as fisher, that live 
in dense forest and nest in cavities is that the locations 
from a GPS collar will be biased due to systematically 
missed telemetry fixes when the animal is in dense cover, 
and thus that conclusions from the analysis will underes-
timate the importance of cover-associated habitat covari-
ates [54, 94]. To correct for habitat-related missed fix 
bias, one approach is to model the probability of obtain-
ing a fix based on habitat characteristics and then to gen-
erate a predicted value of fix success at all locations; the 
data are then weighted by the inverse of this probability 
value to provide more weight to less probable locations 
[54, 95]. To determine if this was a problem with our 
data, we initially quantified the fix success of each collar, 
which is a measure of the number of successful GPS fixes 
relative to the number of attempted fixes. The fix success 
of our collars was poor, with a mean fix success rate of 
50% (range 27–80%). Thus, we performed an analysis to 
determine whether the missed fixes were related to habi-
tat characteristics and would therefore cause bias in the 
analysis or were endogenous to collars or individuals and 
therefore, while not optimal, the analysis could proceed 
with the existing data without habitat bias.

We used our 5-min fisher collar dataset to model the 
importance of environmental and endogenous sources 
of variation to the probability of collar fix success. Since 
an unsuccessful fix attempt acquires no coordinates, we 
estimated the location of missed fixes as equally spaced 
points between two successful locations, following 
Graves and Waller [96], and only included two or fewer 
consecutive missed fixes to reduce estimated location 
uncertainty. We used the ‘adehabitatLT’ v.0.3.25 [97] 
package in program R v.4.1.1 [98] to estimate the spatial 
location of missed fixes. At all successful and estimated 
missed locations, we extracted covariates we hypoth-
esized would likely block satellite reception and influence 
GPS fix success, including canopy cover, aboveground 
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Table 4  Model selection table for assessing the influence of intrinsic and environmental variation on the GPS collar fix success of 12 
radio-collared female fishers (Pekania pennanti) in Idaho, USA, 2013–2018

For each model, the covariates included in the model, number of model parameters (K), AICc, ΔAICc, AICc weight (w), and the log likelihood (LL) are given. Abbreviation 
‘TPI100’ indicates the covariate ‘topographic position index’ calculated at a 100m neighborhood and ‘AGB’ indicates the LiDAR variable ‘aboveground biomass’

Model specification K AICc ΔAICc w LL

FisherID 12 7670.23 0 0.69 − 3823.1

FisherID *LinearAspect 24 7672.85 2.62 0.19 − 3812.37

FisherID + TPI100 + AGB 14 7673.76 3.53 0.12 − 3822.86

FisherID*AGB 24 7685.01 14.78 0 − 3818.45

FisherID *HorizontalCover 24 7685.95 15.72 0 − 3818.92

FisherID *CanopyCover 24 7688.24 18.01 0 − 3820.06

CollarType 2 7911.87 241.64 0 − 3953.93

Year 6 7992.51 322.28 0 − 3990.25

TPI100 + LinearAspect + Slope + Elevation 5 8243.51 573.28 0 − 4116.75

Slope + CanopyCover + HorizontalCover + LinearAspect 5 8255.88 585.65 0 − 4122.94

Null 1 8282.24 612.01 0 − 4140.12

Fig. 5  Predictions of collar fix success from the second-best performing fix success model, FisherID + linear aspect. Predicted lines show response 
(with 95% confidence interval) for each fisher across the range of linear aspect; inconsistent positive and negative responses indicate that linear 
aspect is not a good predictor of fix success across individuals
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biomass, horizontal cover, slope, aspect, topographic 
position index, and elevation. We also considered the 
individual fisher ID, year, and collar schedule as addi-
tional sources of variation in fix success. Using the R 
package ‘lme4’ v.1.1–27.1 [99], we fit generalized lin-
ear models (GLM) with a logistic link and fix success or 
failure as the dependent variable. We did not include a 
random effect since we wanted to test for the influence 
of fisher ID on fix success, and thus we included this as 
a covariate instead. We screened all covariates for pair-
wise correlation |r < 0.6| and did not include correlated 
covariates in the same model. We considered 11 candi-
date models (see Table  4 for model specifications) that 
we hypothesized were most likely to impact collar fix 
success, including interactions between vegetation cover-
related covariates and fisher ID to account for potential 
differences in collar success among individuals, as well 
as models focused on only ID, year, or additive combina-
tions of habitat-related covariates; we compared model 
performance using Akaike’s Information Criteria cor-
rected for small sample size (AICc; [100, 101]).

Fix success analysis results
We did not find evidence that environmental charac-
teristics were affecting the success rate of GPS collars 
on fishers. The model containing only fisher ID was 
the top-performing in our fix success candidate model 
selection procedure, with little model uncertainty 
(Table  4), indicating that variation in successful col-
lar location attempts depended more on the individual 
fisher than on any external environmental features. The 
second-best model was > 2 ΔAIC from the top model 
and contained an interaction effect between fisher 
ID and linear aspect. A plot of predicted fix success 
based on this model showed an inconsistent response 
to aspect across individuals (Fig. 5); thus, we felt con-
fident in inferring that fix success was not consistently 
affected by environmental heterogeneity and there-
fore unlikely to bias the results of a habitat selection 
analysis.

See Fig. 6 and Tables 5, 6, 7.

Fig. 6  Plots show female fisher relative probability of selection based on generalized linear mixed models (GLMMS) of three-way interactions 
between movement type (resting or moving), canopy cover category (sparse (≤ 25%), open (26–50%), moderate (51–75%), and dense (≥ 76%)), 
and either patch size (left plot) or distance to patch edge (right plot). Panels in each plot show the predicted response in each canopy category, 
with panel titles representing the canopy level (sparse = 25, open = 50, moderate = 75, dense = 100). In dense canopy, fishers select large patches, 
while selecting for smaller patches in all other canopy categories; there was no difference in patch size used between moving or resting behaviors. 
Additionally, in dense canopy, fishers selected greater distances from patch edges compared to all other canopy levels, and resting locations were 
more likely to be farther from an edge than moving locations. See Table 3  for model coefficients. Small sample sizes in low canopy cover categories 
resulted in large 95% confidence intervals (indicated by colored shading) and lack of statistical power to detect differences in sparse and open 
canopy categories
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Table 5  This table provides a description of the covariates considered for inclusion in models of resource selection for fishers in our 
study area in Idaho, USA, 2013–2018

The covariate name, description, unit of measure, mean and range, and data source are provided. The mean and range values were calculated across all fisher GPS 
locations collected for the study

Covariate Description Units Mean and range Source

Elevation Elevation above sea level Meters 1346 (757–1894) [106]

Linear Aspect A transformation of circular aspect into a linear variable, with 0 = hotter dryer south-
SW facing, 1 = cooler wetter N-NE facing

NA 0.54 (0–1) [102]

Slope Gradient of elevation Degrees 18.4 (0–52) [106]

Topographic Position Index (TPI) Index of landscape concavity (drainages; negative values) or convexity (ridges; posi-
tive values)

NA − 1.65 (− 25–31) [106]

EVT3047 Existing vegetation type category Northern Rocky Mountain Mesic Montane Mixed 
Conifer Forest

Proportion 0.35 (0–1) [105]

EVT3045 Existing vegetation type category Northern Rocky Mountain Dry-Mesic Montane 
Mixed Conifer Forest

Proportion 0.44 (0–1) [105]

EVT3056 Existing vegetation type category Rocky Mountain Subalpine Mesic-Wet Spruce-Fir 
Forest and Woodland

Proportion 0.07 (0–1) [105]

EVT3159 Existing vegetation type category Rocky Mountain Montane Riparian Forest 
and Woodland

Proportion 0.08 (0–0.90) [105]

EVT3227 Existing vegetation type category Dry-mesic Montane Douglas-fir Forest Proportion 0.04 (0–0.83) [105]

Elev_p25 25th percentile of LiDAR heights above ground Meter 8.87 (0.28–21.1) [106]

Elev_p50 50th percentile of LiDAR heights above ground Meter 14.2 (0.63–28.7) [106]

Ht Std Standard deviation of LiDAR heights above ground Meter 7.46 (0–18.5) [106]

Strata below 2m Proportion of first LiDAR returns between ground level and 2.0 m Proportion 0.21 (0.01–0.82) [106]

Percent first returns above 1 m Percentage of first LiDAR returns greater than 1.0 m above ground level Percent 81.5 (0–100) [106]

Strata 10m Proportion of first LiDAR returns greater than 10.0 m above ground level Proportion 0.50 (0–0.86) [106]

Strata 20m Proportion of first LiDAR returns greater than 20.0 m above ground level Proportion 0.23 (0–0.69) [106]

Canopy relief ratio Measure of forest canopy roughness. Calculated as: ((mean—min) / (max – min)) Proportion 0.41 (0–73) [106]

Horizontal cover Measure of horizontal obstruction between 0 and 2 m above ground level Proportion 0.51 (0.24–1) [103]

Above ground biomass Live and dead aboveground biomass of trees Mg / ha 207 (2.12–603) [104]

Canopy Cover Percent canopy cover Percent 83 (0–100) [107]

Canopy Height Canopy height Meters 15.6 (0.08–49.1) [107]

CanLevel Polygon-based depiction of canopy cover Categorical 25,50,75,100 [107]

Distance to edge Distance to nearest patch edge Meters 138 (0–911) [107]

Patch size Size of polygon-based patch Hectares 9813 (0–21841) [107]

Patch Edge Density Forest fragmentation metric Km/km2 10.2 (0.38–35) [107]
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Table 6  Summaries (median, 25th, and 75th percentile) of amounts of patch size, distance from patch edge, and percent of used 
and available locations in each category of canopy cover for used (actual GPS locations) versus available (random locations in home 
ranges) locations for moving and resting female fishers in Idaho, USA, 2013–2018

Canopy Level 
Category

Use Avail

Median 25th 75th Median 25th 75th

Moving Patch size (ha) 25 2.4 1.7 22.3 53.4 12.2 224.2

50 1.9 1.8 7.5 44.9 10.2 154.6

75 97.5 27.2 138.4 210.0 120.6 474.3

100 10,800.3 7046.0 12,374.9 10,483.0 8076.7 14,561.4

Distance to Edge (m) 25 9.84 7.80 17.00 23.60 17.60 29.60

50 6.05 4.82 8.33 9.92 9.64 11.00

75 10.00 8.69 11.40 11.80 10.60 12.70

100 110.00 60.60 150.00 129.00 103.00 138.00

Percent of locations in canopy level patch 25 1.58 0.77 1.89 2.58 1.84 7.40

50 1.80 1.13 3.87 4.30 3.71 7.10

75 13.70 7.57 21.60 15.90 12.60 20.40

100 83.60 75.30 89.50 79.00 66.10 81.80

Resting Patch size (ha) 25 2.5 2.5 2.5 55.8 27.0 227.4

50 33.3 17.4 49.0 53.0 11.6 173.2

75 14.0 4.8 74.9 227.0 123.4 416.4

100 10,996.5 5449.9 12,101.7 10,461.9 8094.1 14,236.0

Distance to Edge (m) 25 3.45 3.45 3.45 28.80 17.90 32.80

50 2.86 2.49 3.24 10.40 9.40 11.70

75 9.86 4.86 14.20 12.00 11.20 12.90

100 97.80 65.20 145.00 128.00 105.00 137.00

Percent of locations in canopy level patch 25 1.18 1.18 1.18 2.45 1.22 6.44

50 2.97 2.07 3.87 4.81 3.56 8.56

75 8.71 7.43 16.00 15.20 12.70 20.10

100 93.30 87.30 100.00 79.30 68.10 81.10
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Table 7  90% confidence intervals around intercepts and slopes testing functional responses to environmental covariates for resting 
and moving female fishers in Idaho, USA, 2013–2018

Proportional use of resources is demonstrated when slope is indistinguishable from 1 and intercept equals 0. Significant deviations from proportional use, i.e., a 
functional response, are bolded

Covariate Resting Moving

Intercept Slope Intercept Slope

Aboveground biomass − 0.18–3.87 0.28–1.05 − 1.32–2.96 0.44–1.26

Canopy Cover − 0.12–0.01 0.25–0.7 − 0.12–0.07 0.38–1.01

Canopy Height 0.38–2.05 0.26–0.89 − 0.2–1.62 0.41–1.09

Canopy Relief Ratio − 0.6–0.03 0.29–0.98 − 0.43–0.09 0.51–1.08

Elevation 0.58–5.06 0.29–0.92 − 0.06–4.38 0.39–1

25th LiDAR Height Percentile 0.08–1.66 0.27–1 − 0.3–1.19 0.46–1.16

50th LiDAR Height Percentile − 0.23–1.87 0.31–1.11 − 0.69–1.31 0.51–1.28

Standard Deviation of LiDAR Height − 1.06–1.34 0.32–1.54 − 1.56–0.94 0.52–1.8

Northern Rocky Mountain Dry-Mesic Montana Mixed Conifer Forest − 0.28–1.17 0.96–2.03 − 0.05–0.67 0.98–1.49

Northern Rocky Mountain Mesic Montane Mixed Conifer Forest − 0.25–1.17 0.81–1.84 − 0.24–0.81 0.82–1.58

Rocky Mountain Subalpine Mesic-Wet Spruce-Fir Forest and Woodland − 2.25–1.01 0.73–2.06 − 1.85–1.3 0.83–2.07

Rocky Mountain Montane Riparian Forest and Woodland − 3.03–9.54 0.21–3.99 − 3.28–3.77 − 0.01–2.14

Dry-mesic Montane Douglas-fir Forest − 2.02–3.7 0.68–2.26 − 0.96–2.42 0.82–1.76

Horizontal Cover − 0.61–0.11 0.18–1.22 − 0.29–0.13 0.59–1.18

Linear Aspect − 0.95–0.74 − 0.82–1.93 − 0.45–0.84 0.19–2.27

Patch Edge Density − 4.04–1.76 0.17–2.37 − 2.1–0.51 0.71–1.7

Percent of LiDAR first returns > 1 m 0.77–3.3 0.25–0.84 − 0.11–2.92 0.34–1.04

Slope − 1.08–1.16 0.33–1.35 − 1.44–0.76 0.57–1.57

Proportion of LiDAR returns < 2 m − 1.2–0.46 0.35–1.48 − 0.65–0.87 0.66–1.7

Proportion of LiDAR returns > 10 m − 0.42–0.06 0.31–0.87 − 0.33–0.35 0.51–1.29

Proportion of LiDAR returns > 20 m − 1.47–0.5 0.04–1.29 − 1.03–0.47 0.33–1.28

Topographic Position Index 1.96–2.62 − 0.49–0.59 0.9–3.12 − 0.68–1.21

CanLevel25 NA NA − 1.66–0.72 − 0.12–1.33

CanLevel50 NA NA − 2.72–− 0.34 0.72–1.99

CanLevel75 − 6.44–3.64 − 0.46–2.98 − 5.7–0.55 0.69–2.92

CanLevel100 2.39–3.73 0.18–0.5 − 0.84–2.1 0.53–1.22

DistToEdge25 NA NA − 2.71–1.98 0.16–1.64

DistToEdge50 NA NA − 6.76–1.91 − 0.03–3.72

DistToEdge75 − 32.33–5.24 − 1.37–13.47 − 0.68–2.67 − 0.15–1.22

DistToEdge100 − 1.82–5.1 − 0.1–1.36 − 2.67–3.02 0.34–1.55

EdgeDensity25 NA NA − 12.76–10.92 − 2.49–4.96

EdgeDensity50 NA NA − 2.81–2.63 0.14–1.86

EdgeDensity75 − 5.35–1.21 0.5–2.64 − 3.12–0.52 0.75–1.96

EdgeDensity100 − 2.97–2.56 − 0.16–2.1 − 1.73–0.78 0.62–1.64

PatchSize25 NA NA − 4.83–2.32 0.13–1.49

PatchSize50 NA NA − 1.44–4.04 − 0.37–0.76
PatchSize75 − 13.81–5.56 − 0.21–2.55 − 3.85–3.14 0.28–1.36

PatchSize100 − 1.34–5.58 0.44–1.13 − 1.85–4.21 0.57–1.18
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